Additivity properties of topological diagonalizations

نویسندگان

  • Tomek Bartoszynski
  • Saharon Shelah
  • Boaz Tsaban
چکیده

In a work of Just, Miller, Scheepers and Szeptycki it was asked whether certain diagonalization properties for sequences of open covers are provably closed under taking finite or countable unions. In a recent work, Scheepers proved that one of the properties in question is closed under taking countable unions. After surveying the known results, we show that none of the remaining classes is provably closed under taking finite unions, and thus settle the problem. We also show that one of these properties is consistently (but not provably) closed under taking unions of size less than the continuum, by relating a combinatorial version of this problem to the Near Coherence of Filters (NCF) axiom, which asserts that the Rudin-Keisler ordering is downward directed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Critical Cardinalities and Additivity Properties of Combinatorial Notions of Smallness

Motivated by the minimal tower problem, an earlier work studied diagonalizations of covers where the covers are related to linear quasiorders (τ -covers). We deal with two types of combinatorial questions which arise from this study. (1) Two new cardinals introduced in the topological study are expressed in terms of well known cardinals characteristics of the continuum. (2) We study the additiv...

متن کامل

Critical Cardinalities and Additivity Properties of Combinatorial Notions of Smallness

Motivated by the minimal tower problem, an earlier work studied diagonalizations of covers where the covers are related to linear quasiorders (τ -covers). We deal with two types of combinatorial questions which arise from this study. 1. Two new cardinals introduced in the topological study are expressed in terms of well known cardinals characteristics of the continuum. 2. We study the additivit...

متن کامل

Cardinals Related to the Minimal Tower Problem

Motivated by the minimal tower problem, an earlier work studied diagonalizations of covers where the covers are related to linear quasiorders (τ -covers). We deal with two types of combinatorial questions which arise from this study. (1) Two new cardinals introduced in the topological study are expressed in terms of well known cardinals characteristics of the continuum. (2) We study the additiv...

متن کامل

Additivity Numbers of Covering Properties

The additivity number of a topological property (relative to a given space) is the minimal number of subspaces with this property whose union does not have the property. The most well-known case is where this number is greater than א0, i.e. the property is σ-additive. We give a rather complete survey of the known results about the additivity numbers of a variety of topological covering properti...

متن کامل

Visibility Graphs and Deformations of Associahedra

The associahedron is a convex polytope whose face poset is based on nonintersecting diagonals of a convex polygon. In this paper, given an arbitrary simple polygon P , we construct a polytopal complex analogous to the associahedron based on convex diagonalizations of P . We describe topological properties of this complex and provide realizations based on secondary polytopes. Moreover, using the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Symb. Log.

دوره 68  شماره 

صفحات  -

تاریخ انتشار 2003